Use of Nanoparticles to Control Gaseous Emissions

B.Z. Predicala and D.A. Asis

SUMMARY

A series of tests using commercially-available nanoparticles was conducted to evaluate their impact on ammonia (NH₃), hydrogen sulphide (H₂S), carbon dioxide (CO₂), and gas mixture emitted from swine manure slurry. A number of nanoparticles tested reduced NH₃ at initial concentration of 50 ppm by 78 to 86%, while a few were able to reduce 25-ppm H₂S to below detection level (<1 ppm).

from Swine Manure Slurry

INTRODUCTION

Nanoparticles are highly reactive powder materials with unique properties due to its nanoscale dimensions. The goal of this work is to take advantage of advances in nanotechnology to control odour and gaseous emissions from swine operations. Specifically, various types of nanoparticles and deployment techniques for reducing swine barn gaseous contaminants were assessed in laboratory-scale tests.

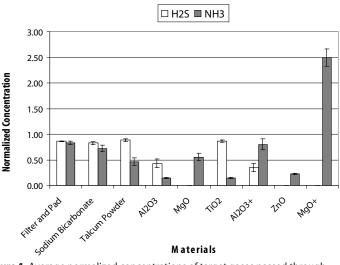
RESULTS AND DISCUSSION

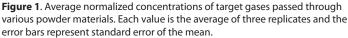
Nanoparticles were selected using a set of criteria based on physical and chemical properties, previous use in remediation applications, availability, and cost. Six types of nanoparticles were chosen and obtained from a commercial supplier; these include: magnesium oxide (MgO), magnesium oxide plus (MgO+, a proprietary name for the same material derived using a different process), aluminum oxide (Al₂O₃), aluminum oxide plus (Al₂O₃+), zinc oxide (ZnO), and titanium dioxide $(TiO_{2}).$

Figure 1 shows the normalized concentrations of each target gas after being passed through a filter cassette assembly filled with different types of nanoparticles and powder materials. Normalized concentration values equal to 1.0 indicate no effect of the treatment; values close to zero indicate effective removal of target gases. For NH₃, the top three materials were Al₂O₃, TiO₂ and ZnO, which correspond to a reduction of 85.6%, 85.2%, and 78%, respectively, from an initial 50-ppm NH₃ concentration. However, the gas filtered with MgO+ showed a possible reaction between the material and the gas analyzer sensor, thus showing a substantial increase in NH₃ concentration.

Using MgO, MgO+ and ZnO nanoparticles, H₂S gas at initial concentration of 25 ppm was reduced to levels below detection limit of the H₂S monitor used (<1.0 ppm). On the other hand, Al₂O₃ and TiO₂, which were effective for NH₃, reduced the concentration of H₂S by 57% and 13%, respectively. A decrease in CO₂ concentration by 73% and 78% was achieved using MgO and MgO+, respectively.

Commonly available powders (talcum powder and sodium bicarbonate) were also tested and showed results comparable to the least effective nanoparticles. However, when compared with the blank filter assembly, the observed results from talcum powder and sodium bicarbonate (and the least effective nanoparticles) indicate that the reduction in the target gas concentration could be mainly attributed to the filtration effect.


"Nanoparticle technology has the potential to significantly reduce Ammonia and Hydrogen Sulphide levels."


CONCLUSIONS

Nanoparticles were found effective in reducing levels of specific gaseous contaminants emitted from swine manure slurry. Additional tests are being conducted to investigate potential techniques for practical implementation of this technology in commercial swine barns.

ACKNOWLEDGEMENTS

Strategic funding provided by Sask Pork, Alberta Pork, Manitoba Pork Council and Saskatchewan Agriculture and Food. Project funding provided by National Science and Engineering Research Council (NSERC) of Canada and the Saskatchewan Agriculture Development Fund (ADF).

